Ensuring Safe Management of Parenteral Nutrition During Drug Shortages:

Strategies and Protocols for Enabling Clinician Success

Mandy Corrigan, MPH, RD, CNSC
Nutrition Support Clinician
mandycorrigan1@gmail.com

nothing to disclose
Objectives

- Discuss the causes of current and recent PN drug shortages
- Outline the RDs role
- Identify professional society resources and guidelines available
- Discuss prioritizing limited supplies to patients with the greatest need
- Provide insight into development of creative protocols and strategies for practical day to day management of PN patients experiencing drug shortages
PN During Shortages

- Lipid Emulsions
- Amino Acids
- Multivitamin
- Trace Elements
 - Multi trace element products
 - Selenium
 - Copper
 - Zinc
 - Chromium
- Electrolytes
 - Calcium gluconate
 - Magnesium sulfate
 - Sodium phosphate
 - Potassium phosphate
 - Potassium chloride
 - Potassium acetate
 - Sodium Chloride
 - Sodium Acetate
- Sterile Ethanol
U.S. Drug Shortages

FDA Center for Drug Evaluation and Research Trends.
Courtesy CAPT. Valerie Jensen, Center for Drug Evaluation and Research (Feb 2011)
Reasons for Sterile Injectable Shortages

- Product quality issues: 54%
- Discontinuations: 11%
- Delays/capacity: 21%
- Raw material: 5%
- Loss of manufacturing site: 3%
- Component problems/shortages: 2%
- Increase demand due to another shortage: 4%

Adapted from Jensen, FDA CDER. ISMP 2011
Legislation

• Preserving Access to Life-Saving Medication Act (H.R. 2245/S. 296)

• Drug Shortage Prevention Act (H.R. 3839)

• Signed into law July 2012

• Food and Drug Administration (FDA) Safety and Innovation Act (FDASIA)

• New requirements on manufacturers for early notification of issues that could lead to a potential shortage or disruption in supply
RD Role

• Assess all patients receiving PN for appropriateness and ability to transition to enteral nutrition

• Knowledge of signs and symptoms of electrolyte, vitamin, and trace element deficiencies

• Recommend timeframe for increased monitoring of laboratory values

• Suggest supplementation, enteral alternatives, and adjustments to PN additives

• Prioritize limited supplies for patients with the greatest need based on nutritional requirements and gastrointestinal anatomy
Professional Resources

A.S.P.E.N
www.nutritioncare.org

American Society of Health System Pharmacists

www.ashp.org/shortages

FDA

Ensuring Clinician Success

• Ensure clinicians/staff have access to professional guidelines

• Know the patient population to determine reasonable alternatives

• Establish competencies
 • I.e. clinicians aware of s/s micronutrient/trace deficiencies, pros & cons of enteral supplementation, etc.

• Staying abreast of upcoming shortages as a manager & communicating with staff & medical team
Ensuring Clinician Success

- Planning ahead
 - Establishing protocol for dealing with potential PN drug shortages BEFORE they occur

- Involving clinicians in the planning/development

- Communicate with the interdisciplinary team

- Frequent re-evaluation of the protocol
 - What is working?
 - What is not?
 - Patient population specific
Intravenous Fat Emulsion (IVFE)

- Inpatient setting
 - Adult on PN for less than 2 weeks
 - NO IVFE
 - Adults on PN greater than 2 weeks
 - 100 grams of IVFE weekly

- Long term home PN (HPN)
 - 100 grams of IVFE weekly
 - example: 500 mL of 20% IVFE once weekly

If NO IVFE available (NPO/malabsorption of oral fat)
- soybean or safflower oil to arms/legs BID
- triene:tetraene ratio for EFAD

A.S.P.E.N. Information to use in the event of an intravenous fat emulsion shortage, 2010
Amino Acids (AA)

- 10% AA shortage
 - Change AA brands based on availability of other products

- 15% AA shortage
 - Reduce protein delivery temporarily
 - Increase volume as able and change to 10% AA
 - Limit to volume restricted patients only

- Premix PN?
Multivitamin (MVI)

- Inpatient setting
 - MVI to 5 mL dose daily

- Long term HPN
 - Limit MVI to 3x week, full 10 mL dose
 - Patients actively being weaned to enteral nutrition
 - D/c MVI, start chewable vitamins orally / via feeding tube

A.S.P.E.N. Multivitamin Shortage Plan, 2012
Multivitamin (MVI)

- All MVI supplies are exhausted:
 - Individual PN vitamin entities
 - Daily:
 - Thiamine 6 mg
 - Vitamin C 200 mg
 - Folate 0.6 mg
 - Pyrioxine 6 mg
 - Weekly
 - IV Vitamin K 5-10 mg
 - Monthly
 - Cyanocobalamin 1000mcg

A.S.P.E.N. Multivitamin Shortage Plan, 2012
Trace elements

• Multi trace element (MTE) packages
 • MTE 4 MTE 5 3 mL dose
 • MTE 4C MTE 5C 1 mL dose

• Single nutrient admixtures
 • Copper Zinc
 • Manganese Selenium
 • Chromium
Trace Elements

• Multi trace element (MTE) shortages
 • Inpatient:
 • Reduce dose in half
 • Discontinue MTE for patients tolerating partial enteral nutrition
 • Provide single trace element supplements (zinc, copper, chromium, selenium, manganese) if no MTE available

• Long term HPN
 • Provide full dose MTE 3 times weekly
 • Discontinue MTE if tolerating partial enteral nutrition
 • Discontinue MTE if HPN is being actively weaned from PN
Trace Elements

- Copper
 - Copper gluconate
 - serum copper < 70mcg/dL
 - 2 mg TID copper gluconate PO
 - serum copper 70-85 mcg/dL
 - 2 mg BID copper gluconate PO

- Chromium
 - Daily multivitamin with mineral supplement PO

- Manganese
 - Deficiency rare, supplementation therefore not required

- Zinc
 - Zinc sulfate or zinc chloride can be added to PN
 - 220 mg Zinc Sulfate PO orally if existing zinc deficiency
 - *Copper & Zinc enteral interaction
 - Competition for enteral absorption

- Selenium
 - Use MTE5 or MTE 5c (has 60 mcg of Selenium)
 - Reduce 120 mcg to 60 mcg to ration
 - 200 mcg Selenium PO daily BID
Electrolytes

- Calcium
- Magnesium
- Phosphorus
- Potassium
- Sodium
Calcium Gluconate

• Inpatient
 • Omit calcium from short term PN
 • Monitor ionized calcium levels (serum calcium is protein bound)
 • If ionized calcium is low
 • Supplement with IV calcium chloride outside the PN bag in acute care setting
 • *Calcium chloride and calcium gluconate dose not equivalent
 • (3x more calcium per 1 gram of Calcium chloride vs. 1 gram of calcium gluconate)
 • Calcium Chloride should not be used in PN solutions due to lack of stability data with calcium chloride

• Long term HPN
 • Reduce calcium gluconate from 15 to 5 mEq in long-term HPN patients to conserve
 • When no calcium, omit and monitor ionized calcium levels
Magnesium

- Inpatient
 - Minimize use Magnesium sulfate while maintaining normal serum values
 - If no Magnesium sulfate, substitute Magnesium chloride in PN solutions
 - grams magnesium sulfate = grams of magnesium chloride
- Long term HPN
 - If no Magnesium sulfate, substitute Magnesium chloride in PN solutions
 - If no Magnesium chloride available
 - Magnesium lactate (Mag tab) PO
 - Avoid magnesium oxide PO due to laxative effect
 - Ensure RDs communicate this to medical team
Magnesium

- Magnesium Lactate (Mag tab) Dosing

<table>
<thead>
<tr>
<th>Serum Magnesium (mg/dL)</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>3 tabs nightly</td>
</tr>
<tr>
<td>1.2 – 1.5</td>
<td>1 tab after meals, 3 tabs nightly</td>
</tr>
<tr>
<td>< 1.2 (if not symptomatic)</td>
<td>2 tabs 1 hour after meals, 3 tabs nightly</td>
</tr>
</tbody>
</table>

1 g Magnesium Sulfate = 8 mEq
1 gram Magnesium sulfate = 98 mg elemental Magnesium
MagTab SR (magnesium lactate) 84 mg elemental Magnesium = 7 mEq magnesium
Phosphorus

• Sodium or potassium phosphate shortages
 • Switch between sodium phos or potassium phos salts in PN solutions

• Use FreAmine (B Braun) Amino Acids
 • Contains 13 mEq (10 mmol) phosphorus per 100g AA

• If no IV phosphate salts
 • NeutraPhos or NeutraPhos K 1-2 packets BID to TID
 • (1 packet = 8 mmol phos, 6.9 mEq Na, 7 mEq K)
 • Watch for exacerbations in enteral output
 • Consider reduction in IV dextrose calories
 • If serum phosphorus < 2 or symptomatic → ER

• Ensure RDs are aware of the signs/symptoms
Potassium

- Potassium Acetate
 - Use Potassium Chloride salt in PN
 - Switch all Potassium Acetate to Potassium Chloride
 - Use Sodium Acetate for acid base balance

- Potassium Chloride
 - Switch to Potassium Acetate salt in PN
 - Use sodium chloride for acid base balance
Sodium

- Sodium Acetate
 - Omit sodium acetate, do not replace with NaCl
 - Start Sodium Bicarbonate PO 650 mg BID to TID
 - Crush and take in applesauce for patients with malabsorption
 - Switch all Potassium to potassium acetate
 - Allow for hyponatremia (Na no lower than 130)
 - Allow for mild acidosis (CO2 no lower than 15)

- Sodium Chloride
 - Switch to Sodium acetate in PN
 - Use Potassium chloride to balance acid base
 - Pharmacy can use 3% NaCl in compounding process if necessary
Sodium Case Study

- PN formula
 - 100 grams AA
 - 335 grams dextrose
 - 3000 mL over 12 hrs

- KCl 100 mEq
- K Acetate 25 mEq
- NaCl 75 mEq
- Na Acetate 180 mEq

- Total Cl 175 mEq
- Total Acetate 205 mEq
- Total Sodium 255 mEq

- 35 year old male, Crohn’s Disease with high output ileostomy and fistula requiring PN

- Oral diet: bites for pleasure only

- Baseline Labs:
 - Na 138
 - Cl 102
 - CO2 26
Sodium Case Study Continued

PN Formula
- **Baseline**
 - KCl: 100 mEq
 - K Acetate: 25 mEq
 - NaCl: 75 mEq
 - Na Acetate: 180 mEq

 - Total Cl: 175 mEq
 - Total Acetate: 205 mEq
 - Total Sodium: 255 mEq

PN Formula Changes
- KCl: 0 mEq
- K Acetate: 125 mEq
- NaCl: 175 mEq
- Na Acetate: 0 mEq

- Total Chloride: 175 mEq
- Total Acetate: 125 mEq
- Total Sodium: 175 mEq

Start Oral Sodium Bicarbonate 650 mg BID crushed in applesauce
Sodium Bicarbonate

- Oral dosing recommendations

<table>
<thead>
<tr>
<th>Serum C02</th>
<th>Recommendations Oral Sodium Bicarbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-22</td>
<td>325 mg 3times daily</td>
</tr>
<tr>
<td>17-19</td>
<td>650 mg 3times daily</td>
</tr>
<tr>
<td>14-16</td>
<td>2- 650 mg tabs 3times daily</td>
</tr>
<tr>
<td>< 14</td>
<td>IV supplementation required</td>
</tr>
</tbody>
</table>

Sodium bicarbonate tabs available in 325 mg or 650 mg
Sterile 98% ethanol

- Used to compound 70% Ethanol lock for prevention of catheter sepsis
 - Standard dose: 3mL of 70% ethanol lock daily while cycled PN not infusing (silicone catheters or implanted ports only)
- Recurrence of Catheter Sepsis when withheld due to shortages
- Options:
 - Decrease concentration of ethanol lock
 • from 70% to 50%
 - Decrease standard dose to every other day
 - Decrease volume
 • From 3 mL to 2 mL
 - Decrease volume and concentration
 • From standard dose to 2 mL of 50%
Increased Monitoring

• Electrolytes (Long term HPN patients)
 – Phosphorus
 – If omitting or reducing by 20 mEq – check labs in 1 week
 – Acetate
 • Check labs in 2 weeks to observe acid / base balance & K+

• Trace elements
 – With shortages - every 3 months
 • Screen for deficiencies with lack of IV product and/or use of enteral supplement
Monitoring and Safety

- Less desirable or familiar products used as alternatives
- Preventable adverse events by use of alternatives
- Increased RD assessment time and frequency of reassessment
- Increased monitoring to protect patient safety
 - Increased cost of more frequent laboratory studies

- Increased RPh compounding time
 - Confusion in prescribing process due to substitution
 - Frequent changes in compounding and distribution
 - Patches in work flow circumvent safety checks
Responsibilities

• Communicate / Publish impact of drug shortages
 • Case studies
 • Retrospective reviews

• Report medication errors
 • National Medication Errors Reporting Program
 • https://www.ismp.org/orderforms/reporterrortoismp.asp
 • Calculation or preparation errors
 • Errors in the prescribing, transcribing, dispensing, administering, and monitoring of medications

• Increase monitoring and interdisciplinary discussion
Questions?
Additional Resources

