Post-Operative Feeding: Time to move on

Kate Willcutts, MS, RD, CNSC
University of Virginia Health System
April 2013

kfw3w@virginia.edu
OBJECTIVES

• Explain the history of post operative feeding.
• Explain the "Enhanced Recovery After Surgery" pathways and the dietitian's role.
• Briefly address benefits of shortening the duration of pre-operative fasting.
• Discuss research that supports early feeding after surgery.
• Explain evidence supporting swifter advancement to regular diet after surgery.
• Explain a process improvement project that resulted in the design of a new diet for postoperative patients.
EARLY POST-OP TUBE FEEDING

• Since the late 70’s – early 80’s studies have been done that demonstrate early post operative tube feeding is safe.

• In some patient populations early EN has been reported to: reduce septic complications, wound infections, improve wound healing.

• Most benefit seen in burn, trauma, and surgical pts.

• More recently studies have shown the safety and benefit of early postoperative oral intake.
Figure 3. Odds ratio (OR) for complications (nausea and vomiting excluded).

<table>
<thead>
<tr>
<th>Study</th>
<th>Early</th>
<th>Traditional</th>
<th>OR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagar</td>
<td>3 of 15</td>
<td>5 of 15</td>
<td>0.53</td>
<td>0.08</td>
<td>3.78</td>
</tr>
<tr>
<td>Ryan</td>
<td>2 of 7</td>
<td>7 of 7</td>
<td>0.03</td>
<td>0</td>
<td>0.94</td>
</tr>
<tr>
<td>Schroeder</td>
<td>4 of 16</td>
<td>7 of 16</td>
<td>0.46</td>
<td>0.07</td>
<td>2.91</td>
</tr>
<tr>
<td>Binderow</td>
<td>0 of 32</td>
<td>0 of 32</td>
<td>1</td>
<td>0.02</td>
<td>61.41</td>
</tr>
<tr>
<td>Beier-Holgersen</td>
<td>8 of 30</td>
<td>19 of 30</td>
<td>0.22</td>
<td>0.05</td>
<td>1.08</td>
</tr>
<tr>
<td>Carr</td>
<td>0 of 14</td>
<td>4 of 14</td>
<td>0.08</td>
<td>0</td>
<td>2.06</td>
</tr>
<tr>
<td>Ortiz</td>
<td>17 of 93</td>
<td>18 of 95</td>
<td>0.96</td>
<td>0.24</td>
<td>3.77</td>
</tr>
<tr>
<td>Hartsell</td>
<td>1 of 29</td>
<td>1 of 29</td>
<td>1</td>
<td>0.07</td>
<td>13.42</td>
</tr>
<tr>
<td>Nessim</td>
<td>3 of 27</td>
<td>4 of 27</td>
<td>0.75</td>
<td>0.11</td>
<td>5.01</td>
</tr>
<tr>
<td>Stewart</td>
<td>10 of 40</td>
<td>12 of 40</td>
<td>0.78</td>
<td>0.17</td>
<td>3.56</td>
</tr>
<tr>
<td>Subtotal</td>
<td>48 of 303</td>
<td>77 of 305</td>
<td>0.55</td>
<td>0.34</td>
<td>0.9</td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>12 of 56</td>
<td>13 of 49</td>
<td>0.76</td>
<td>0.18</td>
<td>3.27</td>
</tr>
<tr>
<td>Delaney</td>
<td>7 of 31</td>
<td>10 of 33</td>
<td>0.69</td>
<td>0.14</td>
<td>3.38</td>
</tr>
<tr>
<td>Lucha</td>
<td>1 of 26</td>
<td>1 of 25</td>
<td>0.96</td>
<td>0.07</td>
<td>12.99</td>
</tr>
<tr>
<td>Zhou</td>
<td>23 of 161</td>
<td>70 of 155</td>
<td>0.21</td>
<td>0.06</td>
<td>0.74</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>22 of 46</td>
<td>20 of 50</td>
<td>1.37</td>
<td>0.33</td>
<td>5.61</td>
</tr>
<tr>
<td>Subtotal</td>
<td>65 of 320</td>
<td>114 of 312</td>
<td>0.62</td>
<td>0.26</td>
<td>1.51</td>
</tr>
<tr>
<td>POOLED</td>
<td>113 of 623</td>
<td>191 of 617</td>
<td>0.55</td>
<td>0.35</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Osland E et al. JPEN J Parenter Enteral Nutr 2011;35:473-487

Copyright © by The American Society for Parenteral and Enteral Nutrition
Figure 4. Odds ratios (ORs) for mortality.

<table>
<thead>
<tr>
<th>Study</th>
<th>Early</th>
<th>Traditional</th>
<th>OR</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagar</td>
<td>0 of 15</td>
<td>0 of 15</td>
<td>1</td>
<td>0.02</td>
<td>53.66</td>
</tr>
<tr>
<td>Ryan</td>
<td>0 of 7</td>
<td>0 of 7</td>
<td>1</td>
<td>0.02</td>
<td>57.31</td>
</tr>
<tr>
<td>Schroeder</td>
<td>0 of 16</td>
<td>0 of 16</td>
<td>1</td>
<td>0.02</td>
<td>53.46</td>
</tr>
<tr>
<td>Binderow</td>
<td>0 of 32</td>
<td>0 of 32</td>
<td>1</td>
<td>0.02</td>
<td>51.94</td>
</tr>
<tr>
<td>Beier-Holgersen</td>
<td>2 of 30</td>
<td>4 of 30</td>
<td>0.52</td>
<td>0.1</td>
<td>2.65</td>
</tr>
<tr>
<td>Carr</td>
<td>0 of 14</td>
<td>1 of 14</td>
<td>0.31</td>
<td>0.01</td>
<td>8.29</td>
</tr>
<tr>
<td>Ortiz</td>
<td>0 of 93</td>
<td>0 of 95</td>
<td>1.02</td>
<td>0.02</td>
<td>52.01</td>
</tr>
<tr>
<td>Hartsell</td>
<td>0 of 29</td>
<td>1 of 29</td>
<td>0.32</td>
<td>0.01</td>
<td>8.24</td>
</tr>
<tr>
<td>Nessim</td>
<td>0 of 27</td>
<td>0 of 27</td>
<td>1</td>
<td>0.02</td>
<td>52.22</td>
</tr>
<tr>
<td>Stewart</td>
<td>0 of 40</td>
<td>1 of 40</td>
<td>0.33</td>
<td>0.01</td>
<td>8.22</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2 of 303</td>
<td>7 of 305</td>
<td>0.58</td>
<td>0.22</td>
<td>1.54</td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>0 of 56</td>
<td>3 of 49</td>
<td>0.12</td>
<td>0.01</td>
<td>2.33</td>
</tr>
<tr>
<td>Delaney</td>
<td>0 of 31</td>
<td>0 of 33</td>
<td>1.06</td>
<td>0.02</td>
<td>55.24</td>
</tr>
<tr>
<td>Lucha</td>
<td>0 of 26</td>
<td>0 of 25</td>
<td>0.96</td>
<td>0.02</td>
<td>50.35</td>
</tr>
<tr>
<td>Zhou</td>
<td>0 of 161</td>
<td>0 of 155</td>
<td>0.96</td>
<td>0.02</td>
<td>48.83</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>3 of 46</td>
<td>1 of 50</td>
<td>2.66</td>
<td>0.38</td>
<td>18.77</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3 of 320</td>
<td>4 of 312</td>
<td>1.03</td>
<td>0.27</td>
<td>3.88</td>
</tr>
</tbody>
</table>

POOLED

| | 5 of 623 | 11 of 617 | 0.71 | 0.32 | 1.56 |

Favor early Favor traditional

Osland E et al. JPEN J Parenter Enteral Nutr 2011;35:473-487

Copyright © by The American Society for Parenteral and Enteral Nutrition
Figure 5. Odds ratios (ORs) for anastomotic leak.

<table>
<thead>
<tr>
<th>Study</th>
<th>Early</th>
<th>Traditional</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagar</td>
<td>0 of 15</td>
<td>1 of 15</td>
<td>0.31</td>
<td>0.01 - 8.29</td>
</tr>
<tr>
<td>Schroeder</td>
<td>0 of 16</td>
<td>0 of 16</td>
<td>1</td>
<td>0.02 - 53.46</td>
</tr>
<tr>
<td>Beier-Holgersen</td>
<td>2 of 30</td>
<td>4 of 30</td>
<td>0.52</td>
<td>0.1 - 2.65</td>
</tr>
<tr>
<td>Carr</td>
<td>0 of 14</td>
<td>0 of 14</td>
<td>1</td>
<td>0.02 - 53.89</td>
</tr>
<tr>
<td>Ortiz</td>
<td>2 of 93</td>
<td>4 of 95</td>
<td>0.56</td>
<td>0.12 - 2.68</td>
</tr>
<tr>
<td>Hartsell</td>
<td>0 of 29</td>
<td>1 of 29</td>
<td>0.32</td>
<td>0.01 - 8.24</td>
</tr>
<tr>
<td>Nessim</td>
<td>0 of 27</td>
<td>0 of 27</td>
<td>1</td>
<td>0.02 - 52.22</td>
</tr>
<tr>
<td>Stewart</td>
<td>1 of 40</td>
<td>0 of 40</td>
<td>3.08</td>
<td>0.12 - 77.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>5 of 264</td>
<td>10 of 266</td>
<td>0.62</td>
<td>0.25 - 1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>2 of 18</td>
<td>1 of 19</td>
<td>1.87</td>
<td>0.22 - 15.73</td>
</tr>
<tr>
<td>Delaney</td>
<td>0 of 31</td>
<td>0 of 33</td>
<td>1.06</td>
<td>0.02 - 55.24</td>
</tr>
<tr>
<td>Lucha</td>
<td>1 of 26</td>
<td>0 of 25</td>
<td>3</td>
<td>0.12 - 77.17</td>
</tr>
<tr>
<td>Zhou</td>
<td>2 of 161</td>
<td>4 of 155</td>
<td>0.53</td>
<td>0.11 - 2.52</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>2 of 42</td>
<td>2 of 35</td>
<td>0.83</td>
<td>0.14 - 5.06</td>
</tr>
<tr>
<td>Subtotal</td>
<td>7 of 278</td>
<td>7 of 267</td>
<td>0.93</td>
<td>0.36 - 2.43</td>
</tr>
<tr>
<td>POOLED</td>
<td>12 of 542</td>
<td>17 of 533</td>
<td>0.75</td>
<td>0.39 - 1.45</td>
</tr>
</tbody>
</table>
Figure 7. Days to passing flatus.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Early</th>
<th>N</th>
<th>Traditional</th>
<th>WMD</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schroeder</td>
<td>16</td>
<td>2.41 (1.33)</td>
<td>16</td>
<td>2.91 (1.29)</td>
<td>-0.5</td>
<td>-2.09</td>
<td>1.09</td>
</tr>
<tr>
<td>Stewart</td>
<td>40</td>
<td>3.00 (1.20)</td>
<td>40</td>
<td>4.00 (1.20)</td>
<td>-1</td>
<td>-2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Subtotal</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
<td>-0.87</td>
<td>-1.33</td>
<td>-0.42</td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou</td>
<td>161</td>
<td>3.00 (0.90)</td>
<td>155</td>
<td>3.60 (1.20)</td>
<td>-0.6</td>
<td>-1.93</td>
<td>0.73</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>43</td>
<td>1.70 (0.20)</td>
<td>49</td>
<td>1.40 (0.10)</td>
<td>0.3</td>
<td>-1.01</td>
<td>1.61</td>
</tr>
<tr>
<td>Subtotal</td>
<td>204</td>
<td>204</td>
<td></td>
<td></td>
<td>-0.14</td>
<td>-1.02</td>
<td>0.74</td>
</tr>
</tbody>
</table>

POOLED

| N | | | | | -0.42| -1.12 | 0.28 |

Copyright © by The American Society for Parenteral and Enteral Nutrition
Figure 8. Days to first bowel motion.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Early</th>
<th>N</th>
<th>Traditional</th>
<th>WMD</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schroeder</td>
<td>16</td>
<td>3.21 (1.50)</td>
<td>16</td>
<td>4.16 (1.33)</td>
<td>-0.95</td>
<td>-2.93</td>
<td>1.03</td>
</tr>
<tr>
<td>Stewart</td>
<td>40</td>
<td>4.77 (2.15)</td>
<td>40</td>
<td>5.00 (1.80)</td>
<td>-0.23</td>
<td>-2.16</td>
<td>1.7</td>
</tr>
<tr>
<td>Subtotal</td>
<td>56</td>
<td></td>
<td>56</td>
<td></td>
<td>-0.55</td>
<td>-1.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou</td>
<td>161</td>
<td>4.10 (1.10)</td>
<td>155</td>
<td>4.80 (1.40)</td>
<td>-0.7</td>
<td>-2.45</td>
<td>1.05</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>43</td>
<td>4.30 (0.30)</td>
<td>49</td>
<td>3.70 (0.30)</td>
<td>0.6</td>
<td>-1.13</td>
<td>2.33</td>
</tr>
<tr>
<td>Subtotal</td>
<td>204</td>
<td></td>
<td>204</td>
<td></td>
<td>-0.04</td>
<td>-1.32</td>
<td>1.23</td>
</tr>
<tr>
<td>POOLED</td>
<td>260</td>
<td></td>
<td>260</td>
<td></td>
<td>-0.28</td>
<td>-1.2</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Copyright © by The American Society for Parenteral and Enteral Nutrition
Figure 9. Length of stay (days).

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Early</th>
<th>N</th>
<th>Traditional</th>
<th>WMD</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagar</td>
<td>15</td>
<td>16.1 (5.27)</td>
<td>15</td>
<td>23.8 (11.86)</td>
<td>-7.67</td>
<td>-15.57</td>
<td>0.23</td>
</tr>
<tr>
<td>Schroeder</td>
<td>16</td>
<td>10.0 (4.00)</td>
<td>16</td>
<td>15.0 (10.0)</td>
<td>-5</td>
<td>-11.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Binderow</td>
<td>32</td>
<td>6.70 (3.25)</td>
<td>32</td>
<td>8.00 (3.75)</td>
<td>-1.3</td>
<td>-6.01</td>
<td>3.41</td>
</tr>
<tr>
<td>Carr</td>
<td>14</td>
<td>9.80 (6.60)</td>
<td>14</td>
<td>9.30 (2.80)</td>
<td>0.5</td>
<td>-5.27</td>
<td>6.27</td>
</tr>
<tr>
<td>Hartsell</td>
<td>29</td>
<td>7.20 (3.30)</td>
<td>29</td>
<td>8.10 (2.30)</td>
<td>-0.9</td>
<td>-5.52</td>
<td>3.72</td>
</tr>
<tr>
<td>Stewart</td>
<td>40</td>
<td>12.8 (7.25)</td>
<td>40</td>
<td>11.5 (3.61)</td>
<td>1.33</td>
<td>-3.72</td>
<td>6.38</td>
</tr>
<tr>
<td>Subtotal</td>
<td>146</td>
<td></td>
<td>146</td>
<td></td>
<td>-1.05</td>
<td>-2.66</td>
<td>0.56</td>
</tr>
<tr>
<td>Post-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>56</td>
<td>24.5 (21.92)</td>
<td>49</td>
<td>15.6 (8.76)</td>
<td>8.9</td>
<td>1.27</td>
<td>16.53</td>
</tr>
<tr>
<td>Delaney</td>
<td>31</td>
<td>5.20 (2.50)</td>
<td>33</td>
<td>5.80 (3.00)</td>
<td>-0.6</td>
<td>-5.19</td>
<td>3.99</td>
</tr>
<tr>
<td>Zhou</td>
<td>161</td>
<td>8.40 (3.40)</td>
<td>155</td>
<td>9.60 (5.00)</td>
<td>-1.2</td>
<td>-5.68</td>
<td>3.28</td>
</tr>
<tr>
<td>Han-Geurts</td>
<td>46</td>
<td>12.0 (1.80)</td>
<td>49</td>
<td>17.5 (4.20)</td>
<td>-5.5</td>
<td>-10.07</td>
<td>-0.93</td>
</tr>
<tr>
<td>Subtotal</td>
<td>294</td>
<td></td>
<td>286</td>
<td></td>
<td>-0.93</td>
<td>-3.95</td>
<td>2.09</td>
</tr>
<tr>
<td>POOLED</td>
<td>440</td>
<td></td>
<td>432</td>
<td></td>
<td>-1.28</td>
<td>-2.94</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Osland E et al. JPEN J Parenter Enteral Nutr 2011;35:473-487

Copyright © by The American Society for Parenteral and Enteral Nutrition
TRADITIONAL POST OP

Fasting

Patient involvement = passive

Bedrest
Fast Track = Enhanced Recovery After Surgery (ERAS)

- Originated in Europe.
- ERAS or modifications of it include up to 20 perioperative interventions\(^1\).
- Mostly in colorectal surgery patients. Also in gastrectomy\(^1\), AAA repair\(^2\), gynecologic, hepatocopancreatic\(^3\), laryngectomy, urology.
- Use of protocols - earlier return of GI function and shorter LOS by 1-4 days.
- Associated with reduction in length of hospital stay, readmissions, reoperations, improved pain control, improved patient satisfaction and less cost.
- Institutions slow to implement ERAS\(^4\).

Length of Hospital Stay in Elective Colorectal Surgery - RCTs

- Traditional
- Enhanced

Adamina et al. Meta analysis

- Anderson et al UK, TC/14 ERP
- Delaney et al USA, TC/31 ERP
- Gatt et al UK TC/19 ERP
- Khoo et al TC/35 ERP
- Serclova et al TC/51 ERP
- Muller et al TC/76 ERP
Cost Differences between pre ERAS and post ERAS

Figure 1 Main elements of the ERAS protocol.
ENHANCED RECOVERY AFTER SURGERY (ERAS) INCLUDES:

- Preoperative patient education
- Pre-op carb solution
- Immediate removal of NGT
- Early food intake
- Chewing gum and laxatives
- Meds to prevent nausea and vomiting
- Limiting IV fluids given
- Oral nutritional supplements until discharge
- Immediate postoperative mobilization

Fearon et al. Vlug et al 2011
WHAT ABOUT PREOPERATIVE FASTING?

• Tradition – NPO after midnight.

• Anesthesia increases risk of pulmonary aspiration.

• Anesthesiology associations are recommending more liberal guidelines.¹

• Allow clear liquids up to 2 hrs before surgery. Solids up to 6 hrs before surgery.

• Reduced preop hunger, thirst, anxiety².

¹ American Society of Anesthesiology and Soreide et al. ² Brady et al.
PRE-OP CARB LOADING

- Carbohydrate-containing IV fluids or oral liquids reported to reduce catabolic response to surgery\(^1\).
- Improved glycogen stores and insulin sensitivity postoperatively\(^3\).
- Does reduce thirst and anxiety\(^3\)
- Some studies tested carbohydrate and protein.

- 12.5 g/100 mL carbohydrates 285 mOsm/kg
- 12% monosaccharides
- 12% disaccharides
- 76% polysaccharides (maltodextrins)

HOW THIS THEORETICALLY WORKS

• Patient enters surgery in fasted or catabolic state. Glycogen stores are depleted.
• Fasting AND surgery cause increased stress hormones and cytokines which cause insulin resistance.
• Hyperglycemia - gluconeogenesis
• Protein breakdown increases
• Negative nitrogen balance
• Preoperative carbohydrate reduces period of fasting.
• Reduces loss of glycogen stores – reducing catabolism.
• Reduces postoperative insulin resistance and levels of stress hormones and cytokines.
POST-OPERATIVE NUTRITION

- Traditional approach – NPO until return of “bowel function”
- Possibly leaving in NGT for decompression of the stomach.
- After “bowel function” returns, remove NGT, start ice chips or clear liquid diet and then “advance as tolerated”.

THIS IS WHY

• Concern about:
 • Anastomotic breakdown and then fistulas or wound dehiscence due to distended bowel from increased volume from enteral nutrition and/or GI secretions.
 • Or aspiration due to ileus and subsequent pneumonia.
ILEUS

- Greek – *eileos* – intestinal colic from *eilo* = to roll tight
- Paralytic or adynamic ileus vs mechanical
- Characterized by:
 - abdominal pain, distention
 - No stool or flatus
 - Emesis
POST-OP ILEUS (POI)1

- “Transient cessation of coordinated bowel motility after surgical intervention, which prevents effective transit of intestinal contents or tolerance of oral intake” 2

- Primary POI – not due to complications of surgery1.

- Secondary POI – due to infection, anastomotic leak, obstruction1.

1. Carroll et al. 2. Kehlet et al
After surgery and without feeding, motility usually returns within:

- 6-12 hours in the small bowel
- 12-24 hours in the stomach
- 48-72 hours in the colon

Prolonged POI > 3-5 days

http://www.medscape.com/content/2004/00/48/28/482837/482837_fig.html
RETURN OF BOWEL FUNCTION

- Presumed resolution of ileus often based on:
 - Presence of bowel sounds
 - Passage of flatus
 - Bowel movements

- However, lack of bowel sounds, flatus or stool are not diagnostic for ileus.

- “Neither the presence nor absence of bowel sounds and evidence of passing flatus or stool is needed prior to the initiation of EN”. ASPEN guidelines.

Behrens et al; Binderow et al; Bufo et al, Feo et al; Seven et al.
Problems with relying on “return of bowel function”

- No good marker for measuring the return of bowel function.

- Patients have been successfully fed prior to the return of bowel sounds, flatus and bowel movements.

- Initiating feeding could stimulate the return of bowel function.

- The classic time frames for return of bowel function after surgery based on not feeding.
NASOGASTRIC TUBES (NGT)

- Postop use of NGT does not reduce postop nausea or vomiting \(^1\); anastomotic leaks \(^2\).
- Reducing use of NGT postoperatively shortens postop ileus, reduces pneumonia \(^3\).
- Enhanced Recovery After Surgery Protocol - avoid NGT.

1. Cheatham et al and Kerger et al.
2. Cheatham et al.
3. Nelson et al.
COLONIC MOTILITY ¹

- 23 patients average age 59

- All had laparotomy for colon surgery. Same anesthesia and bowel prep the day prior to surgery.

- Motility measured with barostat and manometry.

- Study group: Post op day 1 and 2 – liquid meal

- Increased bowel sounds and colonic motility after meals in study group.

¹ Kasparek et al.
GI EFFECTS OF OPIOIDS

Pharmacologic
- Reduced gastric emptying
- Inhibition SB propulsion
- Inhibition of LB propulsion.
- Increased anal sphincter tone, impaired reflex relaxation with rectal distention
- Diminished GI secretions, increased water absorption

Clinical
- Increased gastroesophageal reflux
- Delayed absorption
- Incomplete evacuation, bloating, abd distention
- Impaired ability to evacuate bowel
- Hard, dry stool

Goodman and Gilman’s The Pharmacologic Basis of Therapeutics
MEDICATIONS

- Post-op nausea, vomiting, ileus more prevalent in the past \(^1\).
- Use of low amounts of local anesthetics + epidural opiates reduces ileus \(^2\).
- Conflicting, unimpressive results with pro-kinetics (IV metoclopramide, IV erythromycin).
- No RCT using laxatives alone.
- Avoiding opioids like morphine recommended.
- Alvimopan (Entereg), a mu-opioid receptor antagonist, can reduce POI by 28 hrs.\(^3\)

DO WE NEED TO BE SO CAUTIOUS?

- After laparoscopic surgery, diets are advanced within 24-48 hours regardless of bowel function.
- Quicker return of colonic function.
- Laparoscopic surgery – 30% reduction in length of POI and hospital stay.

- Clinical trials have assessed early postoperative feeding following open procedures.

1. Gervaz et al.
EARLY POST-OP FEEDING STUDIES

- Most studies done in elective colorectal surgery pts. ¹
- The majority of trials have shown:
 - Early removal of NG tubes
 - Earlier initiation of oral diet
 - Quicker progression to regular diet
 - No more serious complications
 - In some trials also shorter LOS
 - Some increased nausea

¹ Behrns et al; Bufo et al; Difronzo et al; Lewis et al; Petrelli et al
NOT FOR EVERYONE

Studies have shown ERAS or early feeding is not for everyone:

 COPD, elderly?

Many studies excluded patients who:

 • had emergent GI surgery.
 • had combined surgeries.
 • Other studies excluded patients with: prior intestinal resection, projected prolonged LOS, perf or abscess, need for parenteral nutrition.
Post Ostomy

- GI studies included patients with new anastomoses and with new ostomies.
- Hartmann’s pouch, abdominoperineal resection always include ostomy.
Elective radical gastrectomy for gastric cancer

ERAS group (n=91) liquids on POD #2. Soft solid food on POD #3.

Conventional group (n=100) liquid diet on POD #4 with slow advancement to soft diet.

The first days of oral intake, oral intake recovery, flatus, and stool were significantly earlier in the ERAS group (n = 91) than in the conventional care group (n = 100).

No difference in aspiration or anastomotic leak.

Yamada et al
OTHER TYPES OF SURGERIES

- Gynecologic
- Cardiac
- Urology
- Otolaryngology

All showed early feeding is safe.

1. Charoenkwan et al; Minig et al; Pearl et al; Steed et al.
2. Miedama et al
3. Pruthi et al
4. Seven et al.
TRADITIONAL DIET ADVANCEMENT

- Ice chips
- Clear liquids
- Full Liquids
- Soft
- Regular
POST-OPERATIVE DIET PROGRESSION: CLEAR LIQUID DIETS

• Why?
• Based on theory that clear liquids are more easily tolerated than full liquids or solids.
• Also to provide hydration and minimize GI secretions.
• Jeffrey et al randomized patients to clear liquids vs. regular diet after open abdominal surgery – no diff in nausea or vomiting.
POST-OP DIET PROGRESSION

- Studies have examined various postoperative diet progressions.

- In all studies, the most progressive study group fared as well, if not better than the traditional diet group.

- No proof that post-op patients benefit from starting with clears, then advancing step-wise to a regular diet.
WHAT IS THE PREFERRED TIMING OF SOLIDS?

• Allowed water, tea immediately after NGT removal after open & lap colon surgery.

• Then fed based on their appetite & preferences.

• Postop Day 1 – 27% requesting & tolerating solids

• Postop Day 2 – 81.3% Postop Day 3 – 97.1%

• Kawamura 2009
145 patients allowed to eat within 24 hrs of colorectal surgery. Their choice.

Postop Day 1 – toast (80%), juice (75%), broth (73%), fruit (73%), potatoes (73%), egg (70%), coffee/tea (64%), ice cream (64%), crackers (64%).

Postop Day 2 – cooked vegetables, hot cereal, casseroles also chosen.

Yeung et al 2009
AN EVALUATION OF THE POST-OPERATIVE DIET IN ELECTIVE COLORECTAL SURGERY PATIENTS AT THE UNIVERSITY OF VIRGINIA HEALTH SYSTEM (UVAHS)

RACHEL CORNETT, MS, RD
Objective 1: Establish baseline data on UVAHS’s practice for post-operative feeding in elective colorectal surgery patients.

Objective 2: Determine perceived food and beverage tolerances of elective colorectal surgery patients and develop a patient-selective “Post-Surgical” diet to implement for future patients.
RESULTS

• Timing of diet after surgery was evidence-based, starting by POD 1.

• Diet advancement was slow, occurring between POD 2-3 and was not typically advanced to a regular diet.
DISCUSSION

• Our results were similar to other studies:
 • Patients preferred more advanced diets than clear liquids after surgery.

• An appropriate self-select diet immediately following surgery includes: coffee/tea, fruit juice, regular soups, saltines, toast, muffins, graham crackers, vanilla wafers, fresh fruit, canned fruit, applesauce, cooked vegetables, potatoes, eggs, ice cream, pudding, yogurt, jello, and popsicles.
 • Many of the same foods as other studies.
GUM CHEWING

• “Sham feeding”
• To stimulate a cephalic-vagal response and reduce postoperative ileus.
• Multiple RCTs \(^1\) have been done on the effects of gum-chewing on postoperative ileus.
• In elective colorectal surgery patients, gum chewing 3x/day for 5-60 minutes starting on POD #1 significantly shortened time to first flatus, first stool and resulted in shorter LOS \(^2\).

1. Kouba et al; Quah et al; Schuster et al; Choi et al
2. Vasquez et al.
CONCLUSION

• How we feed patients after surgery usually is not based on scientific evidence.
• The "Enhanced Recovery After Surgery" pathways have shown that early feeding is possible and safe.
• Shortening the duration of pre-operative fasting and adding preop carbohydrate-containing clear beverages may improve clinical outcomes and patient satisfaction.
• The traditional diet progression from one level of diet to the next is not supported by evidence.
• Patients often want and tolerate solids after surgery.
• Developing a QI project with this focus can help change practice.
THANK YOU!